AbstractThe random encounter model (REM) estimates animal densities from camera‐trap data by correcting capture rates for a set of biological variables of the animals (average group size, speed and activity level) and characteristics of camera sensors. The REM has been widely used for setups in which cameras are mounted on trees or other structures aimed parallel to the ground. Here, we modify the REM formula to accommodate an alternative field of view acquired with vertically oriented camera traps, a type of deployment used to avoid camera theft and damage. We show how the calculations can be adapted to account for a different detection zone with minor modifications. We find that the effective detection area can be close to a rectangle with dimensions influenced by the properties of the Fresnel lens of the camera's motion sensor, the body mass of different species and the height of the camera. The other REM parameters remain the same. We tested the modified REM (vREM) by applying it to wildlife data collected with vertically oriented camera traps in Bardia National Park, Nepal. We further validated that the effective detection area for the camera model used was best approximated as a rectangle shape using maximum likelihood estimation. Density estimates obtained broadly matched independent density estimates for nine species from the previous studies in Bardia with varying body sizes by four orders of magnitude. We conclude that these modifications allow the REM to be effectively used for mammal density estimation for species with a wide range of body sizes, with vertically oriented camera traps.
Read full abstract