Abstract
Respiration in ticks is highly efficient and exceptionally low. Ticks can survive years between bloodmeals by having low activity and respiration to conserve energetic resources. Our objective was to compare metabolic (VCO2) and activity rates across 6 tick species. We predicted that VCO2 would be different among species and scale linearly with activity and body mass. Activity and CO2 production were measured for 32h in 6 tick species: Dermacentor andersoni, D. variabilis, Haemaphysalis longicornis, Rhipicephalus appendiculatus, R. microplus, and R. sanguineus. Individual ticks were measured for 30min three times to ensure breathing occurred. Absolute and mass-specific VCO2, total activity, body mass, and ventilation patterns were compared among species. As expected, ticks did not always breathe during the 30-minute measurements, especially R. sanguineus. Ventilation patterns differed among species with R. microplus having primarily cyclic patterns and R. appendiculatus having discontinuous gas exchange. VCO2 did not scale with body mass in most species. Haemaphysalis longicornis and R. sanguineus had the lowest VCO2; however, H. longicornis was the second most active species. Life history, including questing behavior and range expansion, could be contributing to differences between species. For instance, H. longicornis had exceptionally low metabolic rates despite above average activity levels, suggesting an energetic advantage which may underlie recently documented range expansions in North America. Our results demonstrate how ticks utilize energetic resources to maximize longevity. Future research describing questing behavior and distribution modeling may help explain differences in metabolic rates and activity and impacts on life history traits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.