Alternating direction implicit (ADI) difference method for solving a 2D reaction-subdiffusion equation whose solution behaves a weak singularity at t=0 is studied in this paper. A Grünwald-Letnikov (GL) approximation is used for the discretization of Caputo fractional derivative (of order α, with 0<α<1) on a uniform mesh. Stability and convergence of the fully discrete ADI scheme are rigorously established. With the help of a discrete fractional Gronwall inequality, we get the sharp error estimate. The stability in L2 norm and the convergence of the GL-ADI scheme are strictly proved, where the convergent order is O(τtsα−1+τ2α+h12+h22). Numerical experiments are given to verify the theoretical analysis.
Read full abstract