In the process of textile production, automatic defect detection plays a key role in controlling product quality. Due to the complex texture features of fabric image, the traditional detection methods have poor adaptability, and low detection accuracy. The low rank representation model can divide the image into the low rank background and sparse object, and has proven suitable for fabric defect detection. However, how to further effectively characterize the fabric texture is still problematic in this kind of method. Moreover, most of them adopt nuclear norm optimization algorithm to solve the low rank model, which treat every singular value in the matrix equally. However, in the task of fabric defect detection, different singular values of feature matrix represent different information. In this paper, we proposed a novel fabric defect detection method based on the deep-handcrafted feature and weighted low-rank matrix representation. The feature characterization ability is effectively improved by fusing the global deep feature extracted by VGG network and the handcrafted low-level feature. Moreover, a weighted low-rank representation model is constructed to treat the matrix singular values differently by different weights, thus the most distinguishing feature of fabric texture can be preserved, which can efficiently outstand the defect and suppress the background. Qualitative and quantitative experiments on two public datasets show that our proposed method outperforms the state-of-the-art methods.