Microbial fuel cells (MFCs) can realize the conversion of chemical energy to electrical energy in high-salt wastewater, but the easily deactivated cathode seriously affects the performance of MFCs. To enhance the stability and sustainability of MFC in such circumstances, a bimetallic organic framework ZIF-8/ZIF-67 was utilized for the synthesis of a carbon cage-encapsulated metal catalysts in this study. Catalysts with different Co and Ce ratio (Co@C (without the Ce element), CoCe0.25@C, CoCe0.5@C, and CoCe1@C) were employed to modify the activated carbon cathodes of MFCs. The tests demonstrated that the MFCs with the CoCe0.5@C cathode catalyst obtained the highest maximum power density (188.93 mW/m2) and the smaller polarization curve slope, which boosted the electrochemical activity of microorganisms attached to the anode. The appropriate addition of the Ce element was conductive to the stability of the catalyst’s active center, which is beneficial for the stability of catalytic performance. Under the function of the CoCe0.5@C catalyst, the MFCs exhibited superior and stable norfloxacin (NOR) degradation efficiency. Even after three cycles, the NOR degradation rate remained at 68%, a negligible 5.6% lower than the initial stage. Furthermore, based on the analysis of microbial diversity, the abundance of electrogenic microorganisms on a bioanode is relatively high with CoCe0.5@C as the cathode catalyst. This may be because the better cathode oxygen reduction reaction (ORR) performance can strengthen the metabolic activity of anode microorganisms. The electrochemical performance and NOR degradation ability of MFC were enhanced in a high-salt environment. This paper provides an approach to address the challenge of the poor salt tolerance of cathode catalysts in MFC treatment, and presents a new perspective on resource utilization, low carbon emissions, and the sustainable treatment of high-salt wastewater.