A meshless collocation method based on radial basis function (RBF) interpolation is presented for the numerical solution of Maxwell's equations. RBFs have attractive properties such as theoretical exponential convergence for increasingly dense node distributions. Although the primary interest resides in the time domain, an eigenvalue solver is used in this paper to investigate convergence properties of the RBF interpolation method. The eigenvalue distribution is calculated and its implications for longtime stability in time-domain simulations are established. It is found that eigenvalues with small, but nonzero, real parts are related to the instabilities observed in time-domain simulations after a large number of time steps. Investigations show that by using global basis functions, this problem can be avoided. More generally, the connection between the high matrix condition number, accuracy, and the magnitude of nonzero real parts is established.