A series of polyphenylquinoxaline (PPQ) ultrafine non-woven fibrous membranes have been first successfully prepared via the electrospinning procedure with the soluble PPQ solutions as the starting materials. For this purpose, various organo-soluble PPQ resins were synthesized via the one-step high temperature polycondensation procedure from the aromatic ether-bridged bis(α-diketone) and bis(o-diamine) monomers. Flexible ether linkages and pendant bulky phenyl substituents endowed the PPQ resins good solubility in polar aprotic solvents. The high-molecular-weight PPQ resins were dissolved in N-methyl-2-pyrrolidone (NMP) to afford the PPQ electrospinning solution except PPQ-Ia derived from 4,4′-oxydibenzil (ODB) and 3,3′-diaminobenzidine (DAB) due to the limited solubility in the solvent. All the derived PPQ ultrafine non-woven fibrous membranes maintained good structure integrity after hydrolysis aging either at room temperature (25 °C) for 72 h or at refluxing temperature (100 °C) for 24 h in an aqueous sodium hydroxide (NaOH) solution at a solid content of 20 wt%. Comparatively, the polyimide (PI) reference electrospun membrane (PI-ref) derived from 1,2,4,5-pyrromellitic anhydride (PMDA) and 4,4′-oxydianiline (ODA) lost its original structure only after boiling in the same NaOH solution within 3 h. In addition, the developed PPQ ultrafine non-woven fibrous membranes exhibited good thermal stability with the 5 % weight loss temperatures (T5%) higher than 555.0 °C in nitrogen and glass transition temperatures (Tg) in the range of 248.1–266.1 °C, respectively.
Read full abstract