Glioblastoma multiform (GBM) is the most frequent and aggressive form of brain tumors in adults. However, the development of more efficient and safe nonviral vector gene therapy represents a promising therapeutic approach, using a tumor-specific killer gene, named apoptin. In this study, we describe the efficacy of non-viral gene delivery vectors, the amino acid-conjugated PAMAM derivatives (PAMAM-H-R and PAMAM-H-K) in delivering a therapeutic gene, displaying affinity toward human primary glioma cells (GBL-14 cells) and dermal fibroblasts. We analyzed transfection efficiency, using luciferase (Luci) and a pDNA encoding for enhanced fluorescent protein (EGFP), and cytotoxicity in both cells. The results show that transfection efficiency of PAMAM-H-R improved compared to native PAMAM dendrimer, but cytotoxicity of PAMAM-H-R and PAMAM-H-K were very low. We treated both cells with a polyplex formation of PAMAM-H-R or PAMAM-H-K/apoptin, and analyzed their cellular uptake and localization by flow cytometry and confocal microscopy. Furthermore, we analyzed the endosomal escape effect using TEM images, and found that PAMAM-H-R showed very fast escape from endosome to the cytosol. Caspase 3 activity assay, cell cycle distribution, and JC-1 analysis showed apoptosis induced by apoptin in GBL-14 cells. This indicates that PAMAM-H-R can be a potential nonviral vector gene delivery carrier for brain tumor therapy. The present study demonstrates that PAMAM-H-R/apoptin gene polyplex can be used as an effective therapeutic candidate for GBM due to its selective induction of apoptosis in primary glioma cells as a potential nonviral gene delivery carrier for brain tumor therapy.