We analyze the color-magnetic (or “B”) field two-point function that encodes the finite-mass correction to the heavy-quark momentum-diffusion coefficient. The simulations are done on fine isotropic lattices in the quenched approximation at 1.5Tc, using a range of gradient flow times for noise suppression and operator renormalization. The continuum extrapolation is performed at fixed flow time followed by a second extrapolation to zero flow time. Perturbative calculations to next-to-leading order of this correlation function, matching gradient-flowed correlators to MS¯, are used to resolve nontrivial renormalization issues. We perform a spectral reconstruction based on perturbative model fits to estimate the coefficient κB of the finite-mass correction to the heavy-quark momentum-diffusion coefficient. The approach we present here yields high-precision data for the correlator with all renormalization issues incorporated at next-to-leading order and is also applicable for actions with dynamical fermions. Published by the American Physical Society 2024
Read full abstract