The use of post-consumer recycled (PCR) plastic materials in sensitive packaging applications, such as for cosmetic products and detergents, requires a clear understanding of the identities and quantities of chemical substances, which they may release into packed products. With many potential sources of and thus different types of potentially releasable substances, a reliable non-targeted screening method is required to assess these materials. Such a method should be readily applicable in industrial practice and provide a realistic estimation of substance release. This investigation focused on the use of gas chromatography/coupled mass spectrometry (GC/MS) to analyze substances, which recycled HDPE (rHDPE) plastic pellets release into 95% ethanol under accelerated testing conditions. The results of the repeated testing of reference samples clearly demonstrated the good reproducibility of the described methodology, with standard deviations of repeated determinations of the total released substance amounts of 6.8–8.1%. The application to several production batches of three commercial rHDPE grades additionally demonstrated that the batch-to-batch variation of substances which rHDPE materials release can be confined to less than 10% of variation of the total detectable substance amount. The described methodology is therefore seen as a pragmatic, repeatable assessment of recycled HDPE plastic batches with a view to substance release.