Abstract
Non-targeted screening (NTS) methods are integral in environmental research for detecting emerging contaminants. However, their efficacy can be influenced by variations in hydrophilic-lipophilic balance (HLB) solid phase extraction (SPE) cartridges and high-resolution mass spectrometry (HRMS) instruments across different laboratories. In this study, we scrutinized the influence of five HLB SPE cartridges (Nano, Weiqi, CNW, Waters, and J&K) and four LC-HRMS platforms (Agilent, Waters, Thermo, and AB SCIEX) on the identification of emerging environmental contaminants. Our results demonstrate that 87.6 % of the target compounds and over 59.6 % of the non-target features were consistently detected across all tested HLB cartridges, with an overall 71.2 % universally identified across the four LC-HRMS systems. Discrepancies in detection rates were primarily attributable to variations in retention time stability, mass stability of precursors and fragments, system cleanliness affecting fold change and p-values, and fragment response. These findings confirm the necessity of refining parameter criteria for NTS. Moreover, our study confirms the efficacy of the PyHRMS tool in analyzing and processing data from multiple instrumental platforms, reinforcing its utility for multi-platform NTS. Overall, our findings underscore the reliability and robustness of NTS methods in identifying potential water contaminants, while also highlighting factors that may influence these outcomes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have