This paper treats the problem of estimating a signal <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s(t)</tex> in the presence of noise <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n(t)</tex> where <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s(t)</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n(t)</tex> are independent nonstationary Gaussian processes. Specifically, we present the maximum likelihood and the minimum mean-square estimates of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s(t)</tex> for each <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t, T_{1} \leq t \leq T_{2}</tex> , by observing the entire signal-plus-noise waveform <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x(\cdot)</tex> during the interval <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">[T_{1}, T_{2}]</tex> . Under the condition that the signal cannot be detected perfectly in the presence of noise, we explicilyty prove that both estimates, denoted by <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ŝ(t)</tex> , are given by <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E\{s(t)|x(\cdot)\}</tex> , the conditional expectation of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s(t)</tex> given <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x(\cdot)</tex> . With the use of simultaneously orthogonal expansions of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x(t)</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n(t)</tex> , we further obtain explicit expressions in the form of infinite series for <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ŝ(t)</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\epsilon(t) \equiv E|s(t) - ŝ(t)|^{2}</tex> , the minimum mean-square error. Moreover, if the integral equation <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\sum_{j=0}^{p} \int H̃_{j}(s, u) \frac{\delta^{j}}{\delta u^{j}}X(u, t) du = S(s, t)</tex> admits a formal solution <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\{H̃_{j}(s,t)\}</tex> , then <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ŝ(t)</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\epsilon(t)</tex> have the closed-form expressions <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ŝ(t) = \sum_{j=0}^{p} \int H̃_{j} (t,u)x^{j}(u)du,</tex> <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\epsilon(t) = \sum_{j=0}^{p} \int H̃_{j}(t,u)\frac{\delta^{j}}{\delta u^{j}}N(u,t)du,</tex> where <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S(s,t), N(s,t)</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X(s,t)</tex> are the covariances of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s(t), n(t)</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x(t)</tex> , respectively, and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</tex> is the largest integer for which the <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2p</tex> th partial derivatives of the covariances are continuous. The last result is a generalization of the classical Wiener filtering theory for stationary processes, and it is valid without the condition of imperfect detection if existence of the formal solution is assumed instead. Finally, we exhibit a general solution of the integral equation in the case where both <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s(t)</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n(t)</tex> have rational power spectra.
Read full abstract