New economic conditions have led to innovations in retail industries, such as more dynamic retail approaches based on flexible strategies. We propose and compare different approaches incorporating nonlinear methods for promotional decision-making using retail aggregated data registered at the point of the sale. Specifically, this paper describes a reliable quantification tool as an effective information system leveraged on recent and historical data that provides managers with an operative vision. Furthermore, a new set of indicators are proposed to evaluate the reliability and stability of the data model in the multidimensional feature space by using nonparametric resampling techniques. This allows the user to make a clearer comparison among linear, nonlinear, static, and dynamic data models, and to identify the uncertainty of different feature space regions, for example, corresponding to the most frequent deal features. This methodology allows retailers to use aggregated data in suitable conditions that will result in acceptable confidence intervals. To test the proposed methodology, we used a database containing the sales history of representative products registered by a Spanish retail chain. The results indicate that: (1) the deal effect curve analysis and the time series linear model do not provide enough expressive capacity, and (2) nonlinear promotional models more accurately follow the actual sales pattern obtained in response to the implemented sales promotions. The quarterly temporal analysis conducted enabled the authors to identify long-term changes in the dynamics of the model for several products, especially during the early stage of most recent economic crisis, consistent with the information provided by the reliability indices in terms of the feature space. We conclude that the proposed method provides a reliable operative tool for decision support, allowing retailers to alter their strategies to accommodate consumer behavior.