We study the homogeneous Dirichlet problem for the equation ut-divF(z,∇u)∇u=f,z=(x,t)∈QT=Ω×(0,T),\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} u_t-{\ ext {div}}\\left( \\mathcal {F}(z,\ abla u)\ abla u\\right) =f, \\quad z=(x,t)\\in Q_T=\\Omega \ imes (0,T), \\end{aligned}$$\\end{document}where Omega subset mathbb {R}^N, is a bounded domain with partial Omega in C^2, and mathcal {F}(z,xi )=a(z)vert xi vert ^{p(z)-2}+b(z)vert xi vert ^{q(z)-2}. The variable exponents p, q and the nonnegative modulating coefficients a, b are given Lipschitz-continuous functions. It is assumed that frac{2N}{N+2}<p(z), q(z), and that the modulating coefficients and growth exponents satisfy the balance conditions a(z)+b(z)≥α>0,|p(z)-q(z)|<2N+2inQ¯T\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} a(z)+b(z)\\ge \\alpha >0,\\quad \\vert p(z)-q(z)\\vert <\\frac{2}{N+2}\\hbox { in }\\overline{Q}_T \\end{aligned}$$\\end{document}with alpha =const. We find conditions on the source f and the initial data u(cdot ,0) that guarantee the existence of a unique strong solution u with u_tin L^2(Q_T) and avert nabla uvert ^{p}+bvert nabla uvert ^qin L^infty (0,T;L^1(Omega )). The solution possesses the property of global higher integrability of the gradient, |∇u|min{p(z),q(z)}+r∈L1(QT)with anyr∈0,4N+2,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\vert \ abla u\\vert ^{\\min \\{p(z),q(z)\\}+r}\\in L^1(Q_T)\\quad \ ext {with any }r\\in \\left( 0,\\frac{4}{N+2}\\right) , \\end{aligned}$$\\end{document}which is derived with the help of new interpolation inequalities in the variable Sobolev spaces. The global second-order differentiability of the strong solution is proven: DiF(z,∇u)Dju∈L2(QT),i=1,2,…,N.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} D_i\\left( \\sqrt{\\mathcal {F}(z,\ abla u)}D_j u\\right) \\in L^{2}(Q_T),\\quad i=1,2,\\ldots ,N. \\end{aligned}$$\\end{document}The same results are obtained for the equation with the regularized flux mathcal {F}(z,sqrt{epsilon ^2+(xi ,xi )})xi .