The generalization of music training to unrelated nonmusical domains is well established and may reflect musicians' superior ability to regulate attention. We investigated the temporal deployment of attention in musicians and nonmusicians using scalp-recording of event-related potentials in an attentional blink (AB) paradigm. Participants listened to rapid sequences of stimuli and identified target and probe sounds. The AB was defined as a probe identification deficit when the probe closely follows the target. The sequence of stimuli was preceded by a neutral or informative cue about the probe position within the sequence. Musicians outperformed nonmusicians in identifying the target and probe. In both groups, cueing improved target and probe identification and reduced the AB. The informative cue elicited a sustained potential, which was more prominent in musicians than nonmusicians over left temporal areas and yielded a larger N1 amplitude elicited by the target. The N1 was larger in musicians than nonmusicians, and its amplitude over the left frontocentral cortex of musicians correlated with accuracy. Together, these results reveal musicians' superior ability to regulate attention, allowing them to prepare for incoming stimuli, thereby improving sound object identification. This capacity to manage attentional resources to optimize task performance may generalize to nonmusical activities.