Let X be a real reflexive locally uniformly convex Banach space with locally uniformly convex dual space X⁎. Let T:X⊇DT→2X⁎ be maximal monotone of type Γdϕ (i.e., there exist d≥0 and a nondecreasing function ϕ:0,∞→0,∞ with ϕ(0)=0 such that 〈v⁎,x-y〉≥-dx-ϕy for all x∈DT, v⁎∈Tx, and y∈X),L:X⊃D(L)→X⁎ be linear, surjective, and closed such that L-1:X⁎→X is compact, and C:X→X⁎ be a bounded demicontinuous operator. A new degree theory is developed for operators of the type L+T+C. The surjectivity of L can be omitted provided that RL is closed, L is densely defined and self-adjoint, and X=H, a real Hilbert space. The theory improves the degree theory of Berkovits and Mustonen for L+C, where C is bounded demicontinuous pseudomonotone. New existence theorems are provided. In the case when L is monotone, a maximality result is included for L and L+T. The theory is applied to prove existence of weak solutions in X=L20,T;H01Ω of the nonlinear equation given by ∂u/∂t-∑i=1N(∂/∂xi)Aix,u,∇u+Hλx,u,∇u=fx,t, x,t∈QT; ux,t=0, x,t∈∂QT; and ux,0=ux,T, x∈Ω, where λ>0, QT=Ω×0,T, ∂QT=∂Ω×0,T, Aix,u,∇u=∂/∂xiρx,u,∇u+aix,u,∇u (i=1,2,…,N), Hλx,u,∇u=-λΔu+gx,u,∇u, Ω is a nonempty, bounded, and open subset of RN with smooth boundary, and ρ,ai,g:Ω¯×R×RN→R satisfy suitable growth conditions. In addition, a new existence result is given concerning existence of weak solutions for nonlinear wave equation with nonmonotone nonlinearity.
Read full abstract