The article is concerned with a new nonlocal model based on Eringen’s nonlocal elasticity and generalized thermoelasticity. A study is made of the magneto-thermoelastic waves in an isotropic conducting thermoelastic finite rod subjected to moving heat sources permeated by a primary uniform magnetic field and rotating with a uniform angular velocity. The Laplace transform technique with respect to time is utilized. The inverse transforms to the physical domain are obtained in a numerical manner for the nonlocal thermal stress, temperature, and displacement distributions. Finally, some graphical presentations have been made to assess the effects of various parameters; nonlocal parameter, rotating, applied magnetic field as well as the speed of the heat source on the field variables. The results obtained in this work should be useful for researchers in nonlocal material science, low-temperature physicists, new materials designers, as well as to those who are working on the development of the theory of nonlocal thermoelasticity.
Read full abstract