In this paper, we will focus on following nonlocal quasilinear elliptic system with singular nonlinearities: (S)(-Δ)ps1u=1vα1+vβ1inΩ,(-Δ)qs2u=1uα2+uβ2inΩ,u,v=0in(IRN\\Ω),u,v>0inΩ,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} (S) \\left\\{ \\begin{array}{ll} (-\\Delta )_{p}^{s_1} u =\\dfrac{1}{v^{\\alpha _1}}+v^{\\beta _1}&{} \ ext { in }\\Omega , \\\\ (-\\Delta )_{q}^{s_2} u =\\dfrac{1}{u^{\\alpha _2}}+u^{\\beta _2}&{} \ ext { in }\\Omega , \\\\ u,v=0 &{} \ ext { in } ({I\\!\\!R}^N\\setminus \\Omega ) , \\\\ u,v>0 &{} \ ext { in } \\Omega , \\end{array} \\right. \\end{aligned}$$\\end{document}where Omega subset {I!!R}^N be a smooth bounded domain, s_1,,s_2in (0,1), alpha _1, alpha _2, beta _1, beta _2 are suitable positive constants, (-Delta )_{p}^{s_1} and (-Delta )_{q}^{s_2} are the fractional p-text {Laplacian} and q-text {Laplacian} operators. Using approximating arguments, Rabinowitz bifurcation Theorem, and fractional Hardy inequality, we are able to show the existence of positive solution to the above system.