In this paper we analyze the porous medium equation \begin{document}$ \begin{equation} u_t = \Delta u^m + a\int_\Omega u^p-b u^q -c\lvert\nabla\sqrt{u}\rvert^2 \quad {\rm{in}}\quad \Omega \times I,\;\;\;\;\;\;(◇) \end{equation} $\end{document} where \begin{document}$ \Omega $\end{document} is a bounded and smooth domain of \begin{document}$ \mathbb R^N $\end{document} , with \begin{document}$ N\geq 1 $\end{document} , and \begin{document}$ I = [0,t^*) $\end{document} is the maximal interval of existence for \begin{document}$ u $\end{document} . The constants \begin{document}$ a,b,c $\end{document} are positive, \begin{document}$ m,p,q $\end{document} proper real numbers larger than 1 and the equation is complemented with nonlinear boundary conditions involving the outward normal derivative of \begin{document}$ u $\end{document} . Under some hypotheses on the data, including intrinsic relations between \begin{document}$ m,p $\end{document} and \begin{document}$ q $\end{document} , and assuming that for some positive and sufficiently regular function \begin{document}$ u_0({\bf x}) $\end{document} the Initial Boundary Value Problem (IBVP) associated to (◇) possesses a positive classical solution \begin{document}$ u = u({\bf x},t) $\end{document} on \begin{document}$ \Omega \times I $\end{document} : \begin{document}$ \triangleright $\end{document} when \begin{document}$ p>q $\end{document} and in 2- and 3-dimensional domains, we determine a lower bound of \begin{document}$ t^* $\end{document} for those \begin{document}$ u $\end{document} becoming unbounded in \begin{document}$ L^{m(p-1)}(\Omega) $\end{document} at such \begin{document}$ t^* $\end{document} ; \begin{document}$ \triangleright $\end{document} when \begin{document}$ p and in \begin{document}$ N $\end{document} -dimensional settings, we establish a global existence criterion for \begin{document}$ u $\end{document} .