Abstract
We study the uniqueness, existence, and properties of bounded distributional solutions of the initial value problem for the anomalous diffusion equation ∂tu−Lμ[φ(u)]=0. Here Lμ can be any nonlocal symmetric degenerate elliptic operator including the fractional Laplacian and numerical discretizations of this operator. The function φ:R→R is only assumed to be continuous and nondecreasing. The class of equations include nonlocal (generalized) porous medium equations, fast diffusion equations, and Stefan problems. In addition to very general uniqueness and existence results, we obtain stability, L1-contraction, and a priori estimates. We also study local limits, continuous dependence, and properties and convergence of a numerical approximation of our equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.