The maximal Bp,qs\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$B_{p,q}^{s}$$\\end{document}-regularity properties of a fractional convolution elliptic equation is studied. Particularly, it is proven that the operator generated by this nonlocal elliptic equation is sectorial in Bp,qs\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ B_{p,q}^{s}$$\\end{document} and also is a generator of an analytic semigroup. Moreover, well-posedeness of nonlocal fractional parabolic equation in Besov spaces is obtained. Then by using the Bp,qs\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$B_{p,q}^{s}$$\\end{document}-regularity properties of linear problem, the existence, uniqueness of maximal regular solution of corresponding fractional nonlinear equation is established.
Read full abstract