Abstract
We perform a unified analysis for the boundary behaviour of solutions to nonlocal fractional equationsposed in bounded domains. Based on previous findings for some models of the fractional Laplacian operator, we show how it strongly differs from the boundary behaviour of solutions to elliptic problems modelled upon the Laplace-Poisson equationwith zero boundarydata. In the classical case it is known that, at least in a suitable weak sense, solutions of the homogeneous Dirichlet problem with a forcing term tend to zero at the boundary. Limits of these solutions then produce solutions of some non-homogeneous Dirichlet problem as the interior data concentrate suitably to the boundary. Here, we show that, for equationsdriven by a wide class of nonlocal fractional operators, different blow-up phenomena may occur at the boundary of the domain. We describe such explosive behaviours and obtain precise quantitative estimates depending on simple parameters of the nonlocal operators. Our unifying technique is based on a careful study of the inverse operator in terms of the corresponding Greenfunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.