Mono-static system benefits from its more flexible field of view and simplified structure, however, the backreflection photons from mono-static system lead to count loss for target detection. Counting loss engender range-blind, impeding the accurate acquisition of target depth. In this paper, count loss is reduced by introducing a polarization-based underwater mono-static single-photon imaging method, and hence reduced blind range. The proposed method exploits the polarization characteristic of light to effectively reduce the count loss of the target, thus improving the target detection efficiency. Experiments demonstrate that the target profile can be visually identified under our method, while the unpolarization system can not. Moreover, the ranging precision of system reaches millimeter-level. Finally, the target profile is reconstructed using non-local pixel correlations algorithm.