In this work, we study the damped nonlinear solitary wave structures in electron ion dense collisional plasmas in the presence of exchange correlation potential. Due to high density and low temperature, these plasmas are considered as quantum plasmas. The quantum mechanical effects due to quantum statistical pressure, quantum tunnelling, and exchange correlation due to 1/2 spin of Fermions are included in a quantum hydrodynamic model. The collisions of plasmas particles with neutrals are taken into account to derive the Damped Korteweg-de Vries equation. A reductive perturbation technique is performed to study nonlinearities and dispersive effects in the plasma system. The comparative importance of the potential due to the degenerate pressure, exchange correlation potential, and the Bohm potential in the linear and nonlinear dispersion is presented. The effects of variations of different plasma parameters on propagation characteristics of damped oscillations in the context of astrophysical objects like neutron stars/pulsar are discussed.
Read full abstract