In this paper, we construct a discrete nonlocal integrable lattice hierarchy related to a reverse space-time nonlocal nonlinear self-dual network equation which may have the potential applications in designing nonlocal electrical circuits and understanding the propagation of electrical signals. By means of nonlocal version of [Formula: see text]-fold Darboux transformation (DT) technique, discrete multi-soliton solutions in determinant form are constructed for the reverse space-time nonlocal nonlinear self-dual network equation. Through the asymptotic and graphic analysis, unstable soliton structures of one-, two- and three-soliton solutions are discussed graphically. We observe that the single components in this nonlocal equation display instability while the combined potential terms with nonlocal [Formula: see text]-symmetry show stable soliton structures. It is shown that these nonlocal solutions are clearly different from those of its corresponding local equation. The results given in this paper may explain the soliton propagation in electrical signals.