Abstract

The nonlinear self-dual network equations that describe the propagations of electrical signals in nonlinear LC self-dual circuits are explored. We firstly analyse the modulation instability of the constant amplitude waves. Secondly, a novel generalized perturbation (M, N - M)-fold Darboux transform (DT) is proposed for the lattice system by means of the Taylor expansion and a parameter limit procedure. Thirdly, the obtained perturbation (1, N - 1)-fold DT is used to find its new higher-order rational solitons (RSs) in terms of determinants. These higher-order RSs differ from those known results in terms of hyperbolic functions. The abundant wave structures of the first-, second-, third- and fourth-order RSs are exhibited in detail. Their dynamical behaviours and stabilities are numerically simulated. These results may be useful for understanding the wave propagations of electrical signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.