Abstract

In this paper, we propose a generalised perturbation \((n, N-n)\)-fold Darboux transformation (DT) of the modified Korteweg–de Vries (mKdV) equation using the Taylor expansion and a parameter limit procedure. We apply the generalised perturbation \((1, N-1)\)-fold DT to find the new explicit higher-order rational soliton (RS) solutions in terms of determinants of the mKdV equation. These higher-order RS solutions are different from those known soliton results in terms of hyperbolic functions which are obtained from the classical iterated DT. The dynamics behaviours of the first-, second-, third-, and fourth-order RS solutions are shown graphically. The wave propagation characteristics and stability are also discussed using numerical simulations. We find that the initial constant seed solution plays an important role on the wave propagation stability of RS. Through Miura transformation, we give some complex higher-order rational solutions of the Korteweg–de Vries (KdV) equation which are different from the known results. The relevant structures also are discussed using some figures. The method used can also be extended to seek explicit rational solutions of other nonlinear integrable equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.