The unique one-dimensional chain structure of violet phosphorus provides an ideal platform for the study of second-order nonlinear optical properties. This also offers more possibilities for the further development of novel two-dimensional layered nanomaterials in the frequency domain. The research suggest that the highest occupied molecular orbital of monolayer phosphorene is characterized by a small effective mass and high hole mobility, while the lowest unoccupied molecular orbital exhibits opposite properties. This may be attributed to increased lattice scattering or electron-electron interactions in the conduction band. Monolayer violet phosphorus exhibits strong absorption capabilities in the near-ultraviolet light range, which can be utilized in UV spectroscopy technology for detecting harmful substances in water and air. Besides, its second harmonic generation response is also very strong within the visible light spectrum, and this response significantly varies with changes in angle. This provides theoretical guidance for optimizing the different stacking directions and heterojunction structures of violet phosphorus, more importantly, the sensitivity and directional selectivity of sensors can be improved. The work not only deepens the understanding of the electro-optical performance of violet phosphorus materials but also lays a theoretical foundation and guidance for the design and application of devices based on violet phosphorus.