Over the last decades, passive mode-locked fiber laser has received considerable attention because of ultrashort pulse, compactness, and low cost. As a saturable absorber, nonlinear optical loop mirror (NOLM) has shown the advantages of high damage threshold, possibility of all-PM fiber implementation, short response time and therefore potentially low intrinsic noise. Spectral filtering plays an important role in NOLM mode locked fiber laser, but the influence of filtering parameters on mode locking operation is rarely reported. In this paper, the influence of filtering bandwidth on mode locking operation and on output pulse characteristics are experimentally investigated. A 2 × 2 optical coupler with a splitting ratio of 10 : 90 is introduced at one end of fiber loop to form a loss-imbalanced NOLM, and extracts 90% of intracavity pulse energy as outputs. With this architecture, an all polarization-maintaining figure-8 Er-doped fiber ultrafast laser is achieved. A home-made bandwidth and wavelength tunable bandpass filter is utilized in the cavity, and the filtering bandwidth is defined by 10 dB bandwidth. The clockwise and counter-clockwise mode locked output power are 8.4 mW and 8.6 mW, respectively, with a repetition rate of 2.734 MHz. With a spectral bandwidth of 2.1 nm, the intracavity pulse is shaped by spectral filtering and soliton effect. The 3 dB bandwidth of the clockwise and counter-clockwise mode locked output pulse are 10.1 nm and 1.8 nm, and the values of corresponding full width at half maximum (FWHM) of the direct outputs are 583.7 fs and 2.94 ps, respectively. As the filtering bandwidth increases, the role of filter in spectral shaping weakens, and the parameters of two output pulses become close. When spectral bandwidth is larger than 7.3 nm, the intracavity pulse is shaped by gain spectrum and soliton effect. Both of the clockwise and counter-clockwise output pulses become the transform-limited pulses with almost the same FWHMs of 440 fs. Besides, the wavelength of the figure-8 fiber laser can be adjusted in a range larger than 30 nm by modulating the wavelength of the filter. The tunable mode-locked fiber laser has great potential applications in various application fields.