In this paper we study the stability of the solutions of some nonlinear Neumann problems, under perturbations of the domains in the Hausdorff complementary topology. We consider the problem $${{\left\{\begin{array}{c}-\text{ div}\;\left(a\left( x,\nabla u_{\Omega}\right)\right)=0 \;\text{in}\; \Omega \\ {a\left( x, \nabla u_{\Omega}\right) \cdot \nu=0\; \text{on}\; \partial\Omega}\end{array}\right.}}$$ where \({{\mathbf{R}^n \times \mathbf{R}^n \rightarrow \mathbf{R}^n}}\) is a Caratheodory function satisfying the standard monotonicity and growth conditions of order p, 1 < p < ∞. If Ωh is a uniformly bounded sequence of connected open sets in Rn, n ≥ 2, we prove that if \({{\Omega_{h}^{c} \rightarrow \Omega^{c}}}\) in the Hausdorff metric, \({|\Omega_{h}| \rightarrow |\Omega|}\) and the geodetic distances satisfy the inequality \({d_{\Omega}\left( x,y\right) \leq \liminf_{h} d_{\Omega_{h}} \left( x,y\right)}\) for every \({x, y \in \Omega,}\) then \({\nabla u_{\Omega_h} \rightarrow\nabla u_{\Omega}}\) strongly in Lp, provided that W1, ∞(Ω) is dense in the space L1, p(Ω) of all functions whose gradient belongs to Lp(Ω, Rn).
Read full abstract