Finite element modeling is often used in biomechanical engineering to evaluate medical devices, treatments and diagnostic tools. Using an adequate material model that describes the mechanical behavior of biological tissues is essential for a reliable outcome of the simulation. Pre-programmed material models for biological tissues are available in many finite element software packages. However, since these pre-programmed models are presented to the user as a black box, without the possibility to modify the material description, many researchers turn to implementing their own material formulations. This is a complex undertaking, requiring extensive knowledge while documentation is limited.This paper provides a detailed description, at the level of the biomedical engineer, of the implementation of a nonlinear hyperelastic material model using user subroutines in Abaqus®, in casuUANISOHYPER_INV and UMAT. The Gasser-Ogden-Holzapfel material model is used as an example, resulting in four implementation variations: the built-in implementation, a UANISOHYPER_INV formulation, a UMAT with analytical tangent stiffness formulation and a UMAT with numerical tangent stiffness formulation. In addition, three different element formulations are used: a continuum compressible, a continuum incompressible and a plane stress incompressible. All cases are thoroughly verified by applying a series of deformations on a single cube element and by simulating an extension-inflation experiment with non-homogeneous deformations and multiple elements. In these test cases, stresses, displacements, reaction forces, the required number of iterations and the total CPU time were compared.The results show that the four implementation variations are very similar, with total relative errors between 10−3 and 10−15, number of iterations that varied by maximum one iteration, and a comparable CPU time. In addition to this detailed overview, the user subroutines are added as supplementary material to this tutorial, which can be used as the ideal starting point for biomechanical engineers to implement their own material models at different levels of complexity.