Objective: Neurons in primary visual cortex (V1) display a range of sensitivity in their response to translations of their preferred visual features within their receptive field: from high specificity to a precise position through to complete invariance. This visual feature selectivity and invariance is frequently modeled by applying a selection of linear spatial filters to the input image, that define the feature selectivity, followed by a nonlinear function that combines the filter outputs, that defines the invariance, to predict the neural response. We compare two such classes of model, that are both popular and parsimonious, the generalized quadratic model (GQM) and the nonlinear input model (NIM). These two classes of model differ primarily in that the NIM can accommodate a greater diversity in the form of nonlinearity that is applied to the outputs of the filters. Approach: We compare the two model types by applying them to data from multielectrode recordings from cat primary visual cortex in response to spatially white Gaussian noise After fitting both classes of model to a database of 342 single units (SUs), we analyze the qualitative and quantitative differences in the visual feature processing performed by the two models and their ability to predict neural response. Main results: We find that the NIM predicts response rates on a held-out data at least as well as the GQM for 95% of SUs. Superior performance occurs predominantly for those units with above average spike rates and is largely due to the NIMs ability to capture aspects of the model’s nonlinear function cannot be captured with the GQM rather than differences in the visual features being processed by the two different models. Significance: These results can help guide model choice for data-driven receptive field modelling.