A differential algebraic approach is proposed for the synthesis of a dynamical feedback controller regulating a spacecraft smooth descent toward the surface of a planet which exhibits nonnegligible atmospheric resistance. An exact linearization-based controller is synthesized using Fliess' generalized observability canonical form of the controller system. The smooth controlled trajectory is regulated by means of assumed amplitude modulated thrusting capabilities of the spacecraft. The robustness of the regulator is tested in the presence of significant unmodelled spatial changes in the coefficient of atmospheric resistance. A simulation example is provided. >
Read full abstract