We study the existence of solutions of the nonlinear second order m-point boundary value problem with p-Laplacian at resonance {(ϕp(x′))′=f(t,x,x′),t∈[0,1],x′(0)=0,x(1)=∑i=1m−2aix(ξi),\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \ extstyle\\begin{cases} (\\phi _{p}(x'))'=f(t,x,x'),\\quad t\\in [0,1],\\\\ x'(0)=0, \\qquad x(1)=\\sum_{i=1}^{m-2}a_{i}x(\\xi _{i}), \\end{cases} $$\\end{document} where ϕp(s)=|s|p−2s\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\phi _{p}(s)=|s|^{p-2}s$\\end{document}, p>1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$p>1$\\end{document}, f:[0,1]×R2→R\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$f:[0,1]\ imes \\mathbb{R}^{2}\ o \\mathbb{R}$\\end{document} is a continuous function, ai>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$a_{i}>0$\\end{document} (i=1,2,…,m−2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$i=1,2,\\ldots ,m-2$\\end{document}) with ∑i=1m−2ai=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\sum_{i=1}^{m-2}a_{i}=1$\\end{document}, 0<ξ1<ξ2<⋯<ξm−2<1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$0<\\xi _{1}<\\xi _{2}<\\cdots <\\xi _{m-2}<1$\\end{document}. Based on the topological transversality method together with the barrier strip technique and the cut-off technique, we obtain new existence results of solutions of the above problem. Meanwhile some examples are also given to illustrate our main results.