The beams are frequently utilized in construction as well as in the fabrication of vehicles like as trains, ships, and airplanes. Depending on the necessary working circumstances, several materials may have been utilized in the production of these beams, from high fatigue resistance, high corrosion resistance, strong earthquake resistance, and other aspects. As a result, composite beams made of glass or carbon fibers are increasingly commonly employed. This is a result of its strong collapse resistance, light weight, and strong fatigue stress resistance. In order to compare the models' resistance to deformations, stresses, and strains that they are exposed to during loading, this article focuses on constructing a variety of models using a variety of composite materials and shapes. The outcomes demonstrate a rise in the rate of deformation. against beams with linear shapes in those with non-linear shapes. Additionally, the findings demonstrate an increase in stresses and strains in regions with curves (i.e., areas that are nonlinear).