The ability to use visual signals to identify individuals is an important feature of primate social groups, including humans. Sheehan and Nachman (2014) showed that loci linked to facial morphology had elevated levels of diversity and interpreted this as evidence that the human face is under frequency-dependent selection to enhance individual recognition (Nature Communications 5). In our study, we tested whether this pattern is found in non-human ape species, to help understand whether individual recognition might also play a role in species other than humans. We examined levels of genetic diversity in an available population genomic dataset of humans, chimpanzees, bonobos, gorillas, and orangutans for three sets of loci, (1) loci linked to facial morphology, (2) loci linked to height, and (3) neutrally evolving regions. We tested whether loci linked to facial morphology were more variable than loci linked to height or neutrally evolving loci in each of these species. We found significantly elevated diversity in loci linked to facial morphology in chimpanzees, gorillas, and Sumatran and Bornean orangutans. Our findings closely parallel those of Sheehan and Nachman and are consistent with the idea that selection for facial diversity and individual recognition has not only shaped the evolution of the human face, but it has similarly shaped the evolution of most of our closest primate relatives. We also discuss alternative hypotheses for this pattern.