Pruritus is the leading symptom of dermatophytosis. Microsporium canis is one of the predominant dermatophytes causing dermatophytosis. However, the pruritogenic agents and the related molecular mechanisms of the dermatophyte M. canis remain poorly understood. Here, the secretion of the dermatophyte M. canis was found to dose-dependently evoke itch in mice. The fungal peptide micasin secreted from M. canis was then identified to elicit mouse significant scratching and itching responses. The peptide micasin was further revealed to directly activate mouse dorsal root ganglia (DRG) neurons to mediate the non-histaminergic itch. Knockout and antagonistic experiments demonstrated that MRGPRX1/C11/A1 rather than MRGPRX2/b2 activated by micasin contributed to pruritus. The chimera and mutation of MRGPRX1 showed that three domains (ECL3, TMH3 and TMH6) and four hydrophobic residues (Y99, F237, L240 and W241) of MRGPRX1 played the key role in micasin-triggered MRGPRX1 activation. Our study sheds light on the dermatophytosis-associated pruritus and may provide potential therapeutic targets and strategies against pruritus caused by dermatophytes.
Read full abstract