The suppression of rectification at metal-Mott-insulator interfaces, which was previously shown by numerical solutions to the time-dependent Schrodinger equation and experiments on real devices, is reinvestigated theoretically using nonequilibrium Green's functions. The one-dimensional Hubbard model is used for a Mott insulator. The effects of attached metallic electrodes are incorporated into the self-energy. A scalar potential originating from work-function differences and satisfying the Poisson equation is added to the model. For electron density, we decompose it into three parts. One is obtained by integrating the local density of states over energy to the midpoint of the electrodes' chemical potentials. The others, obtained by integrating lesser Green's functions, are due to couplings with the electrodes and correspond to an inflow and an outflow of electrons. In Mott insulators, incoming electrons and holes are extended over the whole system, avoiding further accumulation of charges relative to that in the case without bias. This induces collective charge transport and results in the suppression of rectification.