We have successfully fabricated an electrochemical sensor for non-enzymatic glucose measurement based on copper oxide (CuO) nanoplates. CuO nanoplates were synthesized by a facile hydrothermal method at 180 oC for 23 h without using any surfactants. Filed-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were used to characterize morphologies and crystal structures of synthesized CuO nanoplates. A mixture of CuO nanoplates and polytetrafluoroethylene with mass ratio 0.15:1 was compressed at 9800 kPa onto platinum (Pt) to form Pt/CuO disk and it has been used as a working electrode for glucose measurement following non-enzymatic approach. Glucose concentration was evaluated by cyclic voltammetry in 0.1M NaOH solution. This enzyme-free electrochemical method was able to detect glucose with a concentration as low as 0.1 mM. These results show that CuO nanoplates are a promising candidate for non-enzymatic glucose detection.
Read full abstract