Casein is among the most abundant proteins in milk and has high nutritional value. Casein's interactions with polysaccharides, polyphenols, and metal ions are important for regulating the functional properties and textural quality of dairy foods. To improve the functional properties of casein-based foods, a deep understanding of the interaction mechanisms and the influencing factors between casein and other food components is required. This review started by elucidating the interaction mechanism of casein with polysaccharides, polyphenols, and metal ions. Thermodynamic incompatibility and attraction are the fundamental factors in determining the interaction types between casein and polysaccharides, which leads to different phase behaviors and microstructural types in casein-based foods. Additionally, the interaction of casein with polyphenols primarily occurs through non-covalent (hydrogen bonding, hydrophobic interactions, van der Waals forces, and ionic bonding) or covalent interaction (primarily based on the oxidation of proteins or polyphenols by enzymatic or non-enzymatic (alkaline or free radical grafting) approaches). Moreover, the selectivity of casein to specific metal ions is also introduced. Factors affecting the binding of casein to the above three components, such as temperature, pH, the mixing ratio, and the fine structure of these components, are also summarized to provide a good foundation for casein-based food applications.