Abstract

Different enzymatic and nonenzymatic approaches were tested and compared to afford enantiopure homoallylic and allylic alcohols as building blocks in a total synthesis showcase. Thereby, highly enantioselective alcohol dehydrogenases and the P450 BM3 monooxygenase variant A74G L188Q were compared to classical asymmetric reagent-controlled allyl additions. Thus, the first total syntheses of the proposed structures for putaminoxins B/D and their respective enantiomers were accomplished. Detailed spectroscopic analysis of the newly synthesized compounds unraveled a discrepancy with respect to the reported structures of putaminoxins B/D. Furthermore, it was demonstrated that total synthesis is generally required for unequivocal assignment of configuration, because purely comparative NMR studies and judgment by analogy can lead to false predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.