BackgroundGrowing evidence has demonstrated that patients undergoing peritoneal dialysis (PD) are more likely to experience cognitive impairment than patients with non-dialysis end-stage renal disease (ESRD); however, the underlying mechanisms remain unclear. This study aimed to identify the role and predictive significance of gut microbiome alterations in PD-associated cognitive impairment.MethodsA total of 29 non-dialysis ESRD patients and 28 PD patients were enrolled in this study and divided into subgroups according to the Montreal Cognitive Assessment (MoCA). Faecal samples were analyzed using 16 S rRNA. Mini-Mental State Examination (MMSE) and MoCA scores were used to assess the degree of cognitive impairment in patients.ResultsThe 16 S rRNA analysis demonstrated differences in gut microbiome abundance and structure between PD and non-dialysis ESRD patients and between PD patients with cognitive impairment (PCI) and PD patients with normal cognition (PNCI). At family and genus levels, Prevotellaceae exhibited the greatest structure difference, while Lactobacillus exhibited the greatest abundance difference between PCI and PNCI. Altered microbiota abundance significantly correlated with cognitive function and serum indicators in PD. In addition, different modules related to fatty acid, lipid, pantothenate, and coenzyme A biosynthesis, and tyrosine and tryptophan metabolism were inferred from 16 S rRNA data between PCI and PNCI. Both groups could be distinguished using models based on the abundance of Lactobacillaceae (Area under curve [AUC] = 0.83), Actinomycetaceae (AUC = 0.798), and Prevotellaceae (AUC = 0.778) families and Lactobacillus (AUC = 0.848) and Actinomyces (AUC = 0.798) genera.ConclusionGut microbiome evaluation could aid early cognitive impairment diagnosis in patients undergoing PD.
Read full abstract