Developing advanced metal-free nitrogen-enriched primary explosives is challenging due to the inherent risks associated with their synthesis and handling. However, there is an urgent need to develop novel lead-free, nitrogen-rich primary explosives that offer balanced energetic properties. C-N bonded bicyclic compound 3-azido-1-(1H-tetrazol-5-yl)-1H-1,2,4-triazol-5-amine (4), its salts, and 3,5-diazido-1H-1,2,4-triazole (8) were synthesized from inexpensive starting materials resulting in a fine blend of sensitivity and stability. These compounds exhibit high nitrogen content (79.78 to 83.43%), good thermal stability (129-210 °C), excellent detonation performance (VOD: 8592-9361 ms-1, DP: 27.1-33.8 GPa), and acceptable sensitivity (IS: 2.5-30 J, FS: 72-288 N). The hot needle tests of compounds 4 and 8 exhibit excellent ignition performance. All of the newly synthesized compounds were fully characterized using infrared spectroscopy (IR), high-resolution mass spectroscopy (HRMS), multinuclear magnetic spectroscopy (NMR), elemental analysis (EA), thermogravimetric analysis-differential scanning calorimetry (TGA-DSC), and 2, 4, and 8 were confirmed by single-crystal X-ray crystallographic studies. The molecular electrostatic potential (ESP), noncovalent interactions reduced density gradient (NCI-RDG) method, and QTAIM analysis were performed to investigate the intermolecular interactions. Together with promising performance properties, ease of synthesis, and ignitability, they are highly suitable candidates to pave new avenues for future applications.
Read full abstract