Recently, a nonconvex relaxation of low-rank matrix recovery (LMR), called the Schatten- <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</i> quasi-norm minimization (0 <; <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</i> <; 1), was introduced instead of the previous nuclear norm minimization in order to approximate the problem of LMR closer. In this paper, we introduce a notion of the restricted <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</i> -isometry constants (0 <; <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</i> ≤ 1) and derive a <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</i> -RIP condition for exact reconstruction of LMR via Schatten- <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</i> quasi-norm minimization. In particular, we determine how many random, Gaussian measurements are needed for the <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</i> -RIP condition to hold with high probability, which gives a theoretical result that it needs fewer measurements with small <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</i> for exact recovery via Schatten- <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</i> quasi-norm minimization than when <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</i> =1.
Read full abstract