The influence function introduced by Hampe1 (1968, 1973, 1974) is a tool that can be used for outlier detection. Campbell (1978) has obtained influence function for Mahalanobis’s distance between two populations which can be used for detecting outliers in discrim-inant analysis. In this paper influence functions for a variety of parametric functions in multivariate analysis are obtained. Influence functions for the generalized variance, the matrix of regression coefficients, the noncentrality matrix Σ-1 δ in multivariate analysis of variance and its eigen values, the matrix L, which is a generalization of 1-R2 , canonical correlations, principal components and parameters that correspond to Pillai’s statistic (1955), Hotelling’s (1951) generalized To2 and Wilk’s Λ (1932), which can be used for outlier detection in multivariate analysis, are obtained. Delvin, Ginanadesikan and Kettenring (1975) have obtained influence function for the population correlation co-efficient in the bivariate case. It is shown in this paper that influence functions for parameters corresponding to r2, R2, and Mahalanobis D2 can be obtained as particular cases.