Abstract
The influence function introduced by Hampe1 (1968, 1973, 1974) is a tool that can be used for outlier detection. Campbell (1978) has obtained influence function for Mahalanobis’s distance between two populations which can be used for detecting outliers in discrim-inant analysis. In this paper influence functions for a variety of parametric functions in multivariate analysis are obtained. Influence functions for the generalized variance, the matrix of regression coefficients, the noncentrality matrix Σ-1 δ in multivariate analysis of variance and its eigen values, the matrix L, which is a generalization of 1-R2 , canonical correlations, principal components and parameters that correspond to Pillai’s statistic (1955), Hotelling’s (1951) generalized To2 and Wilk’s Λ (1932), which can be used for outlier detection in multivariate analysis, are obtained. Delvin, Ginanadesikan and Kettenring (1975) have obtained influence function for the population correlation co-efficient in the bivariate case. It is shown in this paper that influence functions for parameters corresponding to r2, R2, and Mahalanobis D2 can be obtained as particular cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.