AbstractLet $X$ be a connected complex manifold and let $Z$ be a compact complex subspace of $X$. Assume that ${\rm Aut}(Z)$ is strongly Jordan. In this paper, we show that the automorphism group ${\rm Aut}(X,\, Z)$ of all biholomorphisms of $X$ preserving $Z$ is strongly Jordan. A similar result has been proved by Meng et al. for a compact Kähler submanifold $Z$ of $X$ instead of a compact complex subspace $Z$ of $X$. In addition, we also show some rigidity result for free actions of large groups on complex manifolds.
Read full abstract