Abstract It has been recently claimed that KOIs-268.01, 303.01, 1888.01, 1925.01, 2728.01, and 3320.01 are exomoon candidates, based on an analysis of their transit timing. Here, we perform an independent investigation, which is framed in terms of three questions: (1) Are there significant transit timing variations (TTVs)? (2) Is there a significant periodic TTV? (3) Is there evidence for a nonzero moon mass? We applied rigorous statistical methods to these questions alongside a reanalysis of the Kepler photometry and find that none of the Kepler objects of interest (KOIs) satisfy our three tests. Specifically, KOIs-268.01 and 3220.01 pass none of the tests and KOIs-303.01, 1888.01, and 1925.01 pass a single test each. Only KOI-2728.01 satisfies two, but fails the cross-validation test for predictions. Further, detailed photodynamical modeling reveals that KOI-2728.01 favors a negative-radius moon (as does KOI-268.01). We also note that we find a significant photoeccentric effect for KOI-1925.01 indicating an eccentric orbit of at least e > (0.62 ± 0.06). For comparison, we applied the same tests to Kepler-1625b, which reveals that (1) and (3) are passed, but (2) cannot be checked with the cross-validation method used here, due to the limited number of available epochs. In conclusion, we find no compelling evidence for exomoons among the six KOIs. Despite this, we were able to derive exomoon mass upper limits versus semimajor axis, with KOI-3220.01 leading to particularly impressive constraints of M S/M P < 0.4% [2σ] at a similar semimajor to that of the Earth–Moon.
Read full abstract