In this research, the free vibration analysis of cylindrical shells with circumferential stiffeners, i.e. rings with non-uniform stiffeners eccentricity and unequal stiffeners spacing is investigated using analytical, experimental and finite elements (FE) methods. Ritz method is applied in analytical solution while stiffeners treated as discrete elements. The polynomial functions are used for Ritz functions and natural frequency results for simply supported stiffened cylindrical shell with equal rings spacing and constant eccentricity is compared with other's analytical and experimental results, which showed good agreement. Also, a stiffened shell with unequal rings spacing and non-uniform eccentricity with free–free boundary condition is considered using analytical, experimental and FE methods. In experimental method, modal testing is performed to obtain modal parameters, including natural frequencies, mode shapes and damping in each mode. In FE method, two types of modeling, including shell and beam elements and solid element are used, applying ANSYS software. The analytical and the FE results are compared with the experimental one, showing good agreements. Because of insufficient experimental modal data for non-uniformly stiffeners distribution, the results of modal testing obtained in this study could be as useful reference for validating the accuracy of other analytical and numerical methods for free vibration analysis.