Bed topography and grain size are predicted for steady, uniform flow in circular bends by consideration of the balance of fluid, gravity and frictional forces acting on bed load particles. Uniform flow pattern is adequately described by conventional hydraulic equations, with bed shear defined as that effectively acting on bed load grains. This analysis is used as a basis to predict bed topography and grain size for steady, non-uniform flow in non-circular bends (represented by a ‘sine-generated’ curve). The non-uniform flow pattern is calculated using the method of Engelund (1974a). Equilibrium bed form, hence sedimentary structure, is found by comparison of existing flow conditions with one of the schemes describing the hydraulic stability limits of the various bed forms. The model was compared with bankfull flow observations from a channel bend on the River South Esk, Scotland. Theoretical bed topography and velocity distribution were very close to the observed data. However, bed shear stress showed only a broad agreement, probably because of the use a constant friction coefficient value. Mean grain size distribution showed good agreement, but theory did not account adequately for gravel sizes in the talweg region and on the upstream, inner part of the bar, possibly due to theoretical underestimation of effective bed shear. Bed form and sedimentary structure are predicted well using the familiar stream power-grain size scheme. The behaviour of the model under unsteady uniform flow conditions in circular bends was analyzed, and suggests that any variation of grain size and bed topography with stage is likely to be limited to deeper parts of the channel.
Read full abstract